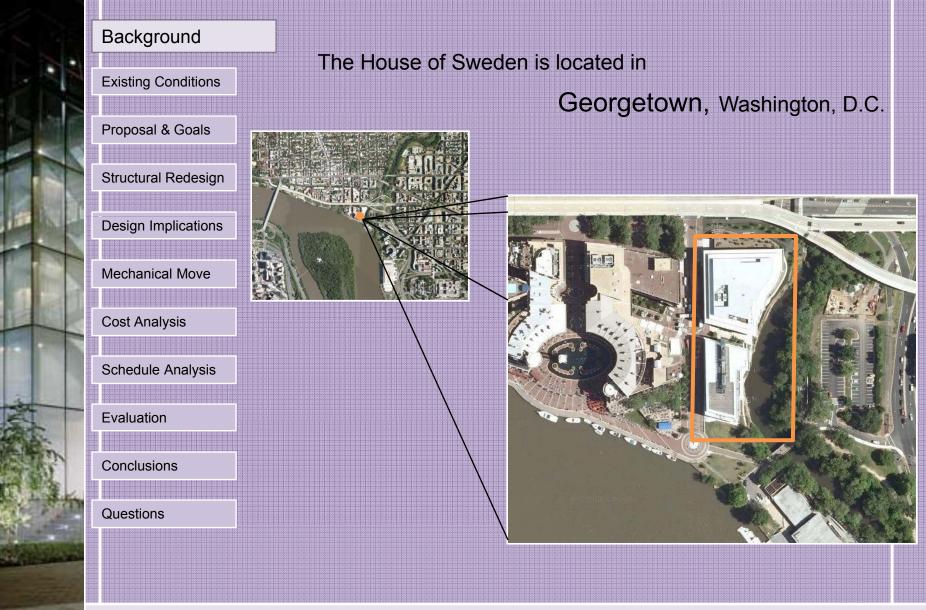
Structural Steel Solution and Optimization

House of Sweden


Georgetown, Washington, D.C.

Kimberlee McKitish Structural Option **AE Senior Thesis**

April 14, 2008 Penn State University

Site Location

Kimberlee McKitish

House of Sweden

Building Statistics

Background

Existing Conditions

Proposal & Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

House of S	weden
Function:	Embassy, Residential, Commercial
Project Size:	North Building – 170,000 SF
	South Building – 69,150 SF
	Parking – 41,555 SF
Stories:	North Building – 7 stories above grade
	South Building – 5 stories above grade
	1 parking level below grade
Total Cost:	North Building – \$22.1 million
	South Building – \$19.7 million
Construction:	August 2004 – May 2006

Kimberlee McKitish

House of Sweden

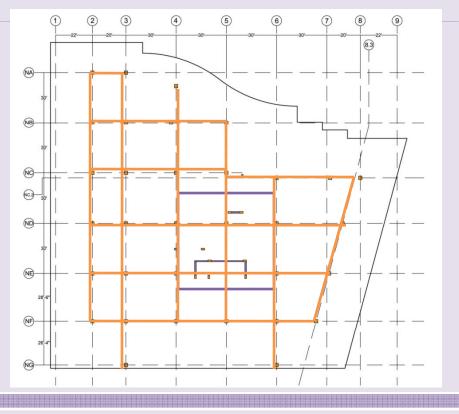
Existing Floor Framing & Foundation

Background

Existing Conditions

Proposal & Goals

Structural Redesign


Design Implications Mechanical Move Cost Analysis Schedule Analysis Evaluation Conclusions Questions

Typical Framing Plan (North Building)

- Post-Tensioned flat slab
- NWC moment frames

and shear walls

- Typical floor height is 10'-
 - 10" with a 12'-0" penthouse
- Foundation: mat slab

Kimberlee McKitish

House of Sweden

Existing Floor Framing and Foundation

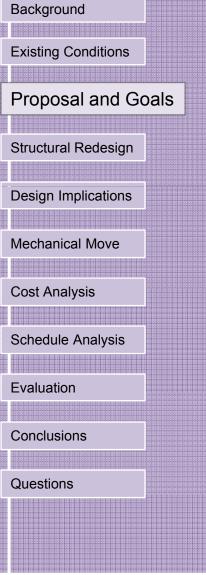
Background

Two Towers

Shared Parking and Plaza

Transfer Level

Steel Posts



Kimberlee McKitish

House of Sweden

Proposal and Goals

Existing Problem

Schedule

- Original Overall Schedule:
 - February 2005-February 2006
 - 12 months total
- Structural Schedule:
 - February 2005-October 2005
 - 8 months total (67% of schedule)

Cost

- Original Overall Cost:
 - \$22,084,233
- Structural Cost:
 - \$6,751,194 (31% of budget)

Kimberlee McKitish

House of Sweden

Proposal and Goals

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Overall Goal

Design and Optimize a steel building solution for the North Building.

This will be accomplished by...

Proposal

 Redesigning the existing gravity system in steel and the lateral system as a moment or braced frame steel system

without impacting the architecture.

- Reducing the overall building cost and erection schedule.
- Research progressive collapse mitigation techniques.
- Generating more revenue by moving the mechanical system and creating more residential space.

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

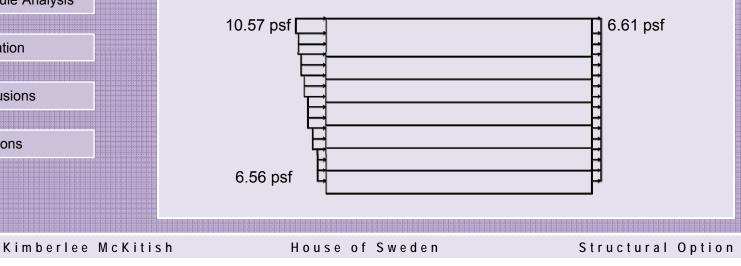
Mechanical Move

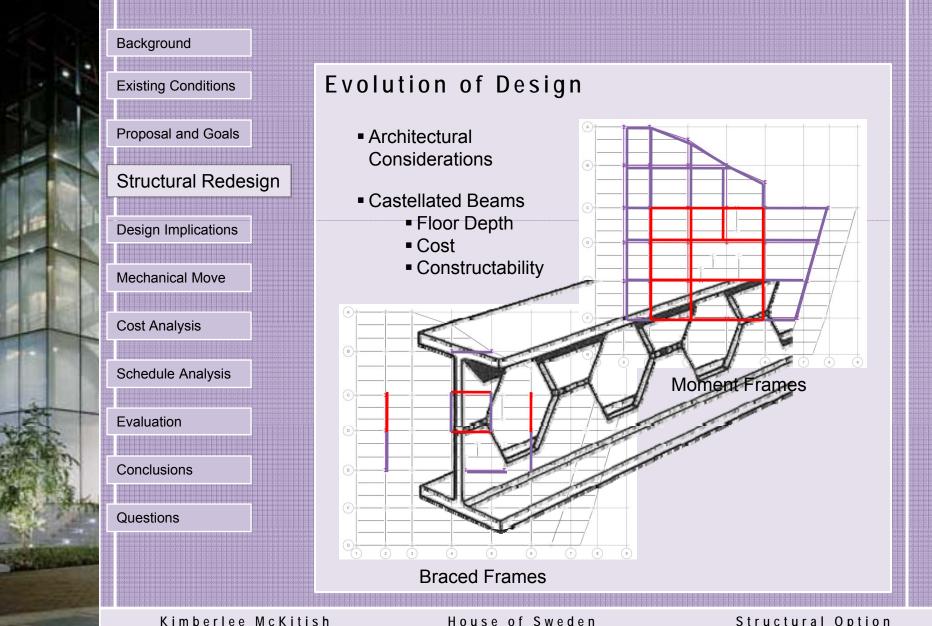
Cost Analysis

Schedule Analysis

Evaluation

Conclusions


Questions


Lateral Loads

- Wind Loads
 - Shear = 1.6*325 K = 520 K
 - Moment = 1.6*10,069 K-ft = 16,110 K-ft
- Seismic Loads (R=3)
 - Shear = 1.0*216 K = 216 K
 - Moment = 1.0*12,972 K-ft = 12,972 K-ft
- Governing Lateral Loads:

$$V_{wind}$$
 = 520 K > $V_{Seismic}$ = 216K

M_{wind} = 16,110 K-ft > M_{Seismic} = 12,972 K-ft

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications Mechanical Move Cost Analysis Schedule Analysis Evaluation

Conclusions

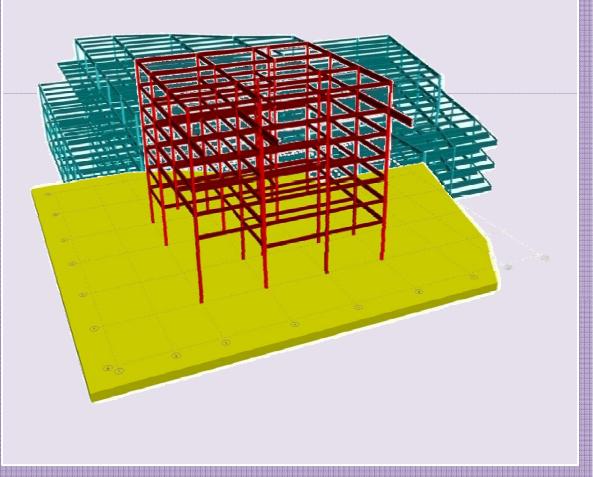
Questions

RAM Computer Model

- Both gravity and lateral members modeled
- Castellated beams were modeled as user-defined members
- Assumed rigid diaphragms except first floor shared plaza
- Seismic forces were applied at the center of mass and inherent and accidental torsion effects were considered
- Wind forces were applied at the center of pressure and each of the 4 load cases outlined in ASCE7-05 were considered
- Braces were assumed pinned at both ends
- Lateral beams were assumed fixed at both ends
- Base was modeled as fixed due to mat foundation
- Modeling of all beam and column elements took panel zone, shear, and axial deformations into account
- P-delta effects was considered and a dynamic analysis was performed to find periods of vibrations for the model
- Wind drift was determined based on ASCE7-05 Commentary to Appendix C using load combination of: D+0.5L+0.7W

Kimberlee McKitish

House of Sweden


Existing Conditions

Proposal and Goals

Structural Redesign

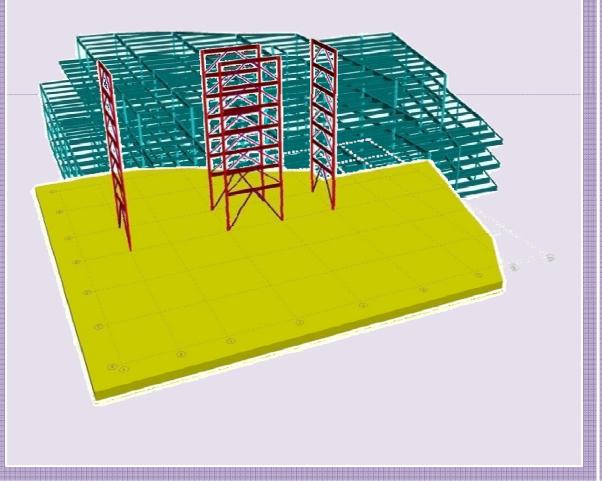
Design Implications
Mechanical Move
Cost Analysis
Schedule Analysis
Evaluation
Conclusions
Questions

Moment Frame Cases

Kimberlee McKitish

House of Sweden

Background


Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications
Mechanical Move
Cost Analysis
Schedule Analysis
Evaluation
Conclusions
Questions

Braced Frame Cases

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications Mechanical Move Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

NWC Braced Frame Checks

Check		Comment	Observation
	Story Drifts	Allowable story drifts for each level are met in each of the two orthogonal directions. Although the computed story drifts is at most 38% of the allowable, H/400, this design was driven more by member strength instead of serviceability.	ОК
	Torsion	Accidental Torsion = 5%. Inherent torsion is assumed by applying loads at the center of mass and being resisted by the center of rigidity of the structure.	ОК
	Redundancy	There are only two frames in each direction so one resists at least 50% of the total story shear, however, in SDC=B, ρ is still equal to 1.0.	ОК
	Modal Period	ASCE7-05 Approximate Period, CuTa=1.63 sec RAM modal period X Direction: 1.49 sec RAM modal period Y Direction: 1.71 sec Sine the X direction RAM model period is less than the period approximation, this period was then used to update the seismic loads in the model.	ОК
	Member Spot Checks	Columns and beams are approximately 32% to 96% of their total design strength based off their interaction equations. This occurs due to member updates for size uniformity.	Some System Overdesign

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Material Takeoff

- Steel tonnage takeoffs from RAM models
- \$1.50/lb of steel estimated cost for materials

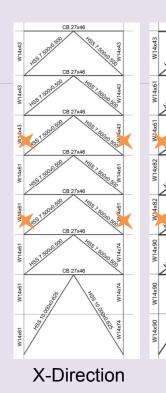
Structural Frame Type	Steel Weight (Ib)	Cost
NWC Braced Frame	1229639	\$1.844.459
LWC Braced Frame	1206033	\$1,809,050
NWC Moment	1343073	\$2,014,610
Frame		
LWC Moment	1302411	\$1,953,617
Frame		

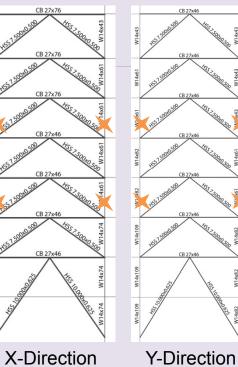
- LWC Premium 30%
 - Total Deck Area: 185,147 SF
 - NWC 7.5" deep: 3,143 CY*\$85/CY = \$267,155
 - LWC 6.5" deep: 2,571 CY*120/CY = \$308,520
 - \$41,365 premium for LWC
- LWC Braced Frame vs. NWC Braced Frame
 - \$35,409 savings using LWC Braced Frames
- Total Difference \$5,956 more to use LWC Braced Frames

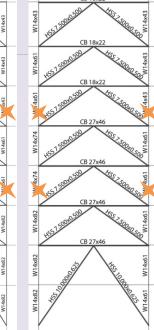
Kimberlee McKitish

House of Sweden

Background


Existing Conditions


Proposal and Goals


Structural Redesign

Design Implications Mechanical Move Cost Analysis Schedule Analysis Evaluation Conclusions

Normal Weight Concrete Braced Frames

Y-Direction

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

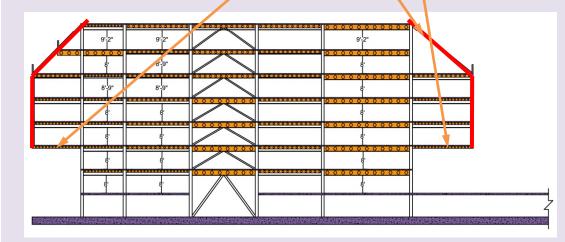
Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

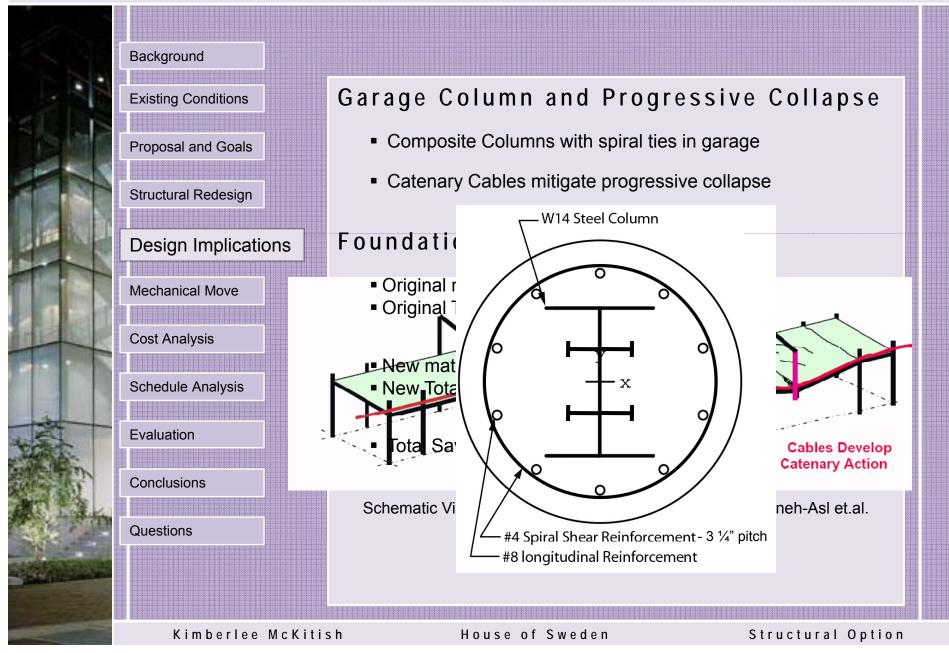
Schedule Analysis


Evaluation

Conclusions

Questions

Cantilever Solution


- Long cantilevers involved in this design
- Designed a steel hanger system
- Governing size: HSS 7.000x0.500

Kimberlee McKitish

House of Sweden

Design Implications

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

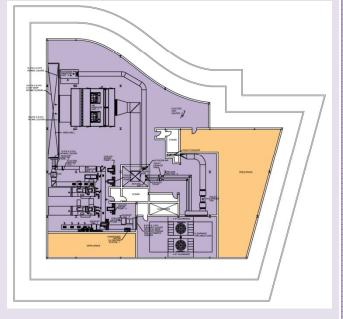
Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

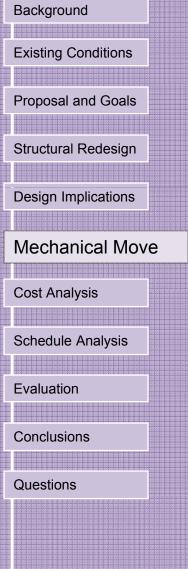
Conclusions


Questions

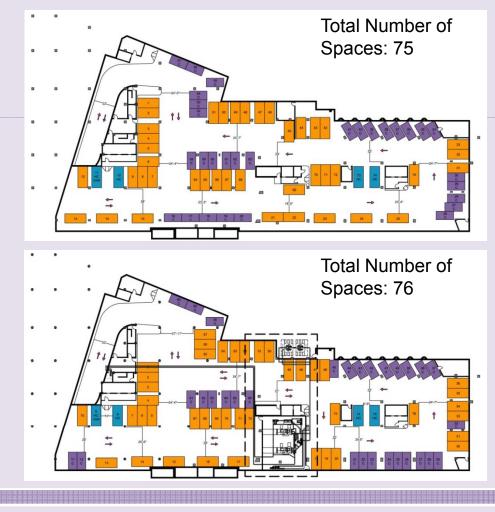
Problem Statement:

Entire Penthouse space is taken up by mechanical equipment

Goals:


- Move the mechanical room to the basement parking garage without losing the required number of parking spaces.
- Create apartments in the new penthouse space so more revenue can be generated for the owner by charging a premium for these units.
- Look at the impacts of this move on the cost and schedule and architecture of the project.

Kimberlee McKitish


House of Sweden

Kimberlee McKitish

Parking Study

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

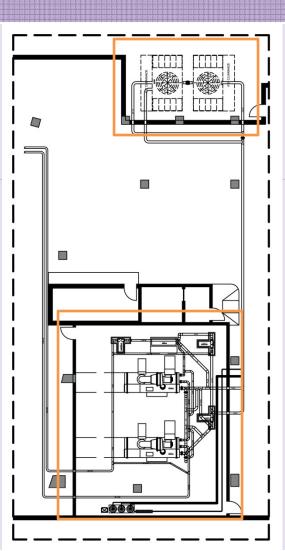
Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation


Conclusions

Questions

Mechanical Move

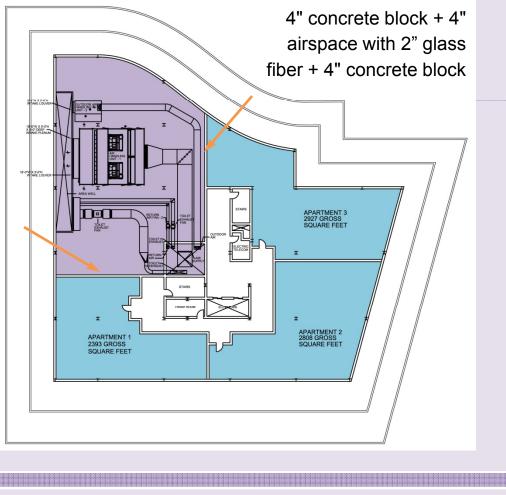
- Redesigned the parking level
- Created space for the chillers
- Placed the cooling towers outside next to Rock Creek so air can be drawn
- Impact to "scenic walkway"

Kimberlee McKitish

House of Sweden

Background Existing Conditions Proposal and Goals Structural Redesign Design Implications Mechanical Move Cost Analysis

Schedule Analysis


Evaluation

Conclusions

Kimberlee McKitish

Questions

Penthouse Redesign

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

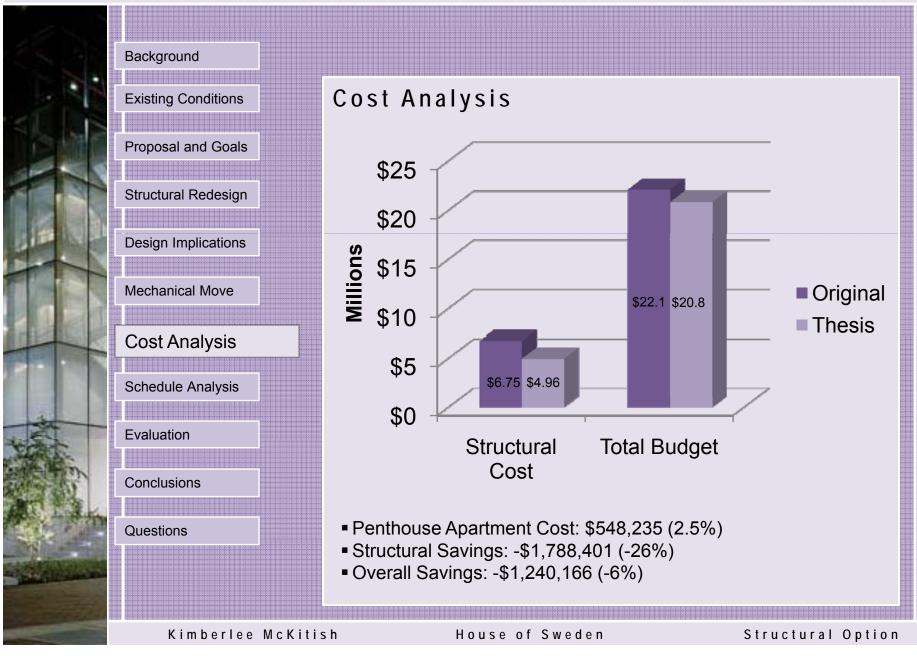
Design Implications Mechanical Move

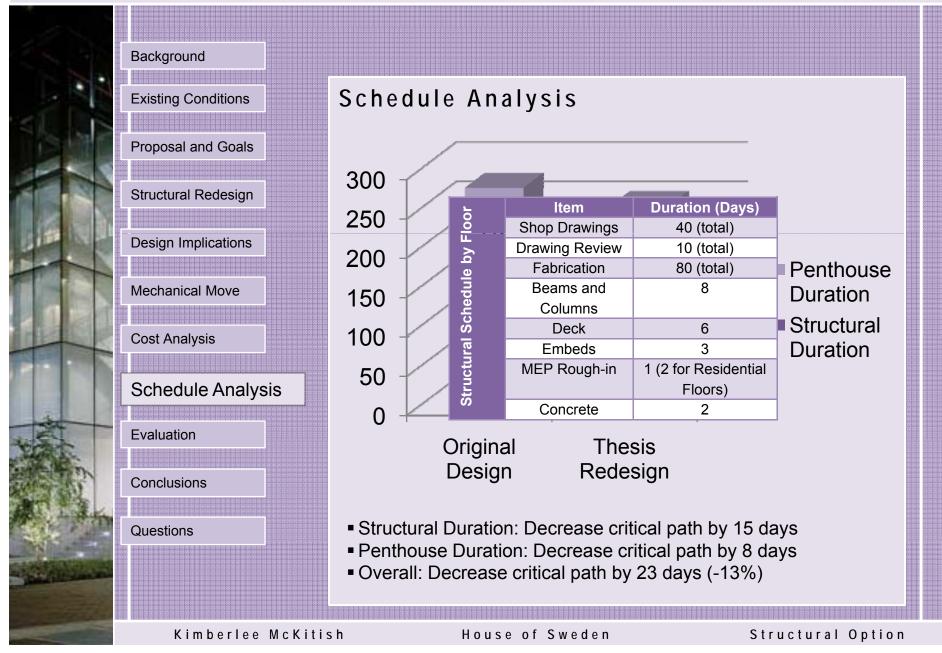
Cost Analysis

Schedule Analysis

Evaluation

Conclusions


Questions


Cost Analysis

	ltem	Amount	Units	Material Unit Cost	Material Cost	Labor Unit Cost	Labor Cost	Total Cost
	Columns	134.3	Ton	\$838	\$112,530	\$370	\$49,691	\$162,221
	Beams	480.5	Ton	\$1,461	\$701,770	\$370	\$177,785	\$879,555
	Braces	41.8	Ton	\$2,899	\$121,178	\$370	\$15,466	\$136,644
	Brace Connections	84	EACH	\$0	\$0	\$200	\$16,800	\$16,800
	Shear Connections	1880	EACH	\$0	\$0	\$100	\$188,000	\$188,000
lysi	Shear Studs	11865	EACH	\$0	\$3,441	\$1	\$7,712	\$11,153
Ana	Metal Deck	185147	SF	\$4	\$740,588	\$1	\$185,147	\$925,735
Cost	Concrete (4000 psi)	3143	CY	\$85	\$267,155	\$79	\$248,297	\$515,452
Structural Cost Analysis	Welded Wire Fabric	1851.47	CSF	\$18	\$34,160	\$22	\$39,807	\$73,966
Stru	Concrete (5000 psi)	1506	CY	\$92	\$138,552	\$79	\$118,974	\$257,526
	Rebar	54.3	Ton	\$230	\$12,489	\$600	\$32,580	\$45,069
	Fireproofing	50374	SF	\$2	\$100,748	\$2	\$100,748	\$201,496
	New Foundation			Previousl	y Calculated	l		\$901,855
							Subtotal	\$4,315,473
							O&P	15%
							Total	\$4,962,794

Kimberlee McKitish

House of Sweden

Evaluation of Redesign

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications Mechanical Move Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Evaluation

Structural Redesign in Steel	Completed
Reduce Cost	\checkmark
Retain Original Architecture	\checkmark
Reduce Erection Schedule	\checkmark
Design for Progressive Collapse	\checkmark
Penthouse Redesign	
Move Equipment Without Losing Required Parking	\checkmark
Generate More Revenue by Creating Apartment Space	v
Cost and Schedule Analysis	
Decrease Overall Structural Cost	\checkmark
Decrease Overall Structural Schedule	\checkmark

Kimberlee McKitish

House of Sweden

Final Conclusions

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Conclusions

- The overall cost decreases significantly, lending more merit to the steel solution.
- The overall schedule decreases and the critical path decreases by 23 days also lending merit to this solution.
- The savings on the foundation is possibly significant enough to offset the extra cost of the progressive collapse mitigating catenary cables and this area warrants further investigation.
- The penthouse redesign potentially generates more revenue for the owner with little impact on the budget and no impact on the schedule.

Kimberlee McKitish


House of Sweden

Structural Steel Solution and Optimization

Background **Existing Conditions** Proposal and Goals Structural Redesign **Design Implications** Mechanical Move **Cost Analysis** Schedule Analysis Evaluation Conclusions Questions

Questions?

Acknowledgements

Oncore Construction – Armada Hoffler – Tadjer Cohen Edelson – VOA – CMC Dr. Andres LePage – M. Kevin Parfitt – Robert Holland – Dr. Linda Hanagan A special thanks to family, friends, and classmates for their much needed support

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Gravity Loads

Floor Dead Loads						
	Design Load	Reference				
Normal Weight Concrete	150 pcf	ACI 318-08				
Roof Pavers	25 psf	Structural Drawings				
Ballast, Insulation, and waterproofing	8 psf	AISC 13 th Edition				
Glass Curtain Wall	6.4 psf	Glass Association of North America				
Studs and Batt Insulation	4 psf	AISC 13 th Edition				
Superimposed MEP	12 psf					

Roof Live Loads					
Design Load Reference					
Public Terrace	100 psf	ASCE7-05			
Snow Load	30 psf	ASCE7-05			

Floor Live Loads								
Occupancy	Design Load	Reference						
Penthouse Machine	150 psf	Structural Drawings						
Room								
Residential	80 psf + 20 psf for partitions	Structural Drawings						
Stairways	100 psf	ASCE7-05						
Corridors	100 psf	ASCE7-05						
Commercial and Plaza	100 psf	Structural Drawings						
Area								

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Lateral Loads

Wind Pressures (North Building N-S)							
	Height	Kz	q _z	Windward	Leeward	Total	Length in E-W
	(ft)		(psf)	Wall (psf)	Walls (psf)	(psf)	Direction (ft)
	77	0.918	16.18	10.54	-3.95	14.49	160
	59	0.846	14.91	9.71	-3.95	13.66	190
	48.17	0.801	14.12	9.19	-3.95	13.14	206
	37.33	0.746	13.15	8.56	-3.95	12.51	206
	26.5	0.672	11.84	7.71	-3.95	11.66	206
	15.67	0.587	10.35	6.74	-3.95	10.69	206
	4.83	0.57	10.05	6.54	-3.95	10.49	162

North Building N-S						
Story	Height	Force	Shear	Moment		
	(ft)	(K)	(K)	(ft-K)		
PH	77'-0"	14	0.0	1071		
MR	59'-0"	31	14	1805		
6	48'-2"	30	44	1442		
5	37'-4"	29	74	1069		
4	26'-6"	81	103	2143		
3	15'-8"	75	184	1178		
2	4'-10"	18	259	85		
1	-6'-0"	0	277	0		
			V = 277	ΣM =		
				8792		

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Wind Loads

Wind Pressures (North Building E-W)						
Height	Kz	q _z	Windward	Leeward	Total	Length in E-W
(ft)		(psf)	Wall (psf)	Walls (psf)	(psf)	Direction (ft)
77	0.918	16.18	10.57	-6.61	17.18	135
59	0.846	14.91	9.74	-6.61	16.35	176
 48.17	0.801	14.12	9.22	-6.61	15.83	192
37.33	0.746	13.15	8.59	-6.61	15.20	192
26.5	0.672	11.84	7.74	-6.61	14.35	192
15.67	0.587	10.35	6.76	-6.61	13.37	163
4.83	0.57	10.05	6.56	-6.61	13.17	163

North Building E-W						
Height	Force	Shear	Moment			
(ft)	(K)	(K)	(ft-K)			
77'-0"	14	0.0	1075			
59'-0"	34	14	1996			
48'-2"	33	44	1613			
37'-4"	35	74	1293			
26'-6"	97	103	2579			
15'-8"	90	184	1404			
4'-10"	22	259	107			
-6'-0"	0	277	0			
		V = 325	ΣM = 10069			
	Height (ft) 77'-0" 59'-0" 48'-2" 37'-4" 26'-6" 15'-8" 4'-10"	Height (ft) Force (K) 77'-0" 14 59'-0" 34 48'-2" 33 37'-4" 35 26'-6" 97 15'-8" 90 4'-10" 22	Height (ft)Force (K)Shear (K)77'-0"140.059'-0"341448'-2"334437'-4"357426'-6"9710315'-8"901844'-10"22259-6'-0"0277			

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Seismic Loads (NWC)

	Vertical Distribution of Seismic Forces (Moment Frame)					
Lev	vel 🛛	Height h _x	Story Weight w _x	Lateral	Story Shear	Moment at
		(ft)	(K)	Force Fx (K)	Vx (K)	Floor (ft-K)
Р		83'-0"	1533	58	58	4775
MF	२	65'-0"	1613	41	99	2679
6		54'-2"	1982	38	137	2061
5		43'-4"	1995	27	164	1169
4		32'-6"	1782	15	179	498
3		21'-8"	1109	5	184	109
2		10'-10"	1098	5	186	18
Σw _i h	i ^k =	5,103,746	ΣF _x = V =	186 K	ΣM =	11,330 ft-k

	Vertical Distribution of Seismic Forces (Braced Frame)					
	Level	Height h _x	Story Weight w _x	Lateral	Story Shear	Moment at
		(ft)	(K)	Force Fx (K)	Vx (K)	Floor (ft-K)
	Р	83'-0"	1524	64	64	5308
	MR	65'-0"	1604	47	111	3069
	6	54'-2"	1972	45	156	2414
	5	43'-4"	1968	32	188	1394
	4	32'-6"	1769	19	207	619
	3	21'-8"	1098	7	214	142
	2	10'-10"	1076	2	216	26
Σ	W _i h _i ^k =	3,119,645	ΣF _x = V =	216 K	ΣM =	12,972 ft-k

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Kimberlee McKitish

Questions

Seismic Loads (LWC)

	Vertical Distribution of Seismic Forces (Moment Frame)					
Level	Height h _x	Story Weight w _x	Lateral	Story Shear	Moment at	
	(ft)	(K)	Force Fx (K)	Vx (K)	Floor (ft-K)	
Р	83'-0"	1014	38	38	3280	
MR	65'-0"	1094	28	67	1831	
6	54'-2"	1336	26	93	1399	
5	43'-4"	1328	18	111	784	
4	32'-6"	1202	10	121	339	
3	21'-8"	778	4	125	77	
2	10'-10"	747	1	126	12	
Σw _i h _i k :	= 3,423,048	ΣF _x = V =	126 K	ΣM =	7,623 ft-k	

	Vertical Distribution of Seismic Forces (Braced Frame)					
L	Level	Height h _x	Story Weight w _x	Lateral	Story Shear	Moment at
		(ft)	(K)	Force Fx (K)	Vx (K)	Floor (ft-K)
	Р	83'-0"	1524	47	47	3936
	MR	65'-0"	1604	36	83	2334
	6	54'-2"	1972	33	117	1807
	5	43'-4"	1968	24	141	1044
	4	32'-6"	1769	14	155	466
	3	21'-8"	1098	5	160	111
	2	10'-10"	1076	2	162	19
Σι	w _i hi ^k =	2,084,780	ΣF _x = V =	162 K	ΣM =	9,718 ft-k

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign **Design Implications** Mechanical Move Cost Analysis Schedule Analysis Evaluation Conclusions Questions

RAM Computer Model

Wide-	Equivalent Castellated
Flange	Beam
W12x14	CB12x15
W14x22	CB15x19
W16x26	CB18x22
W21x48	CB27x46
W24x76	CB27x60
W27x84	CB27x76
W30x90	CB27x97
W30x108	CB27x119
W40x167	CB36x162
W40x324	CB50x201
W40x372	CB50x221

Kimberlee McKitish

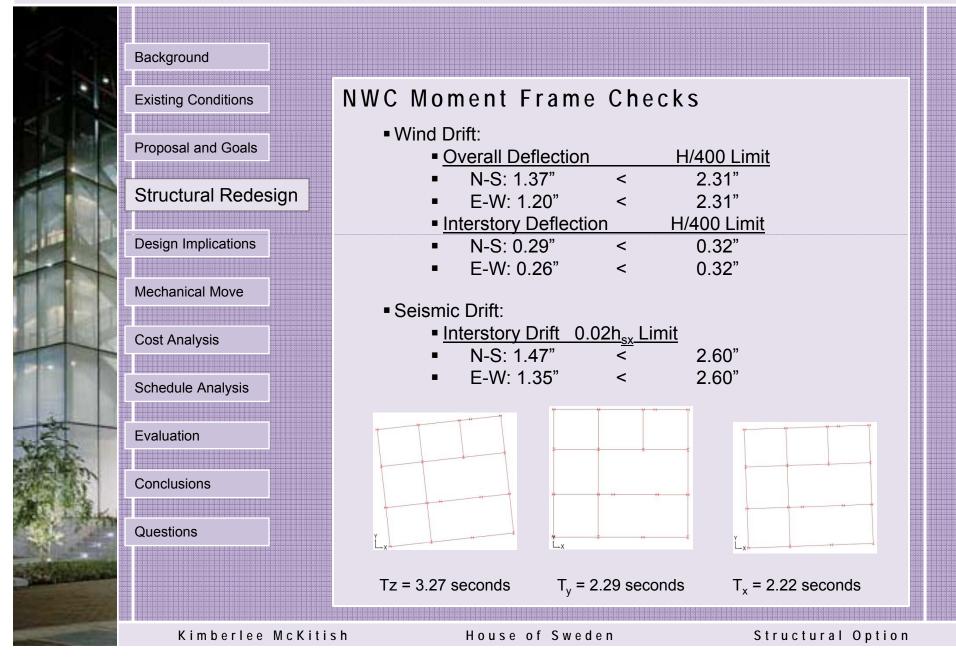
House of Sweden

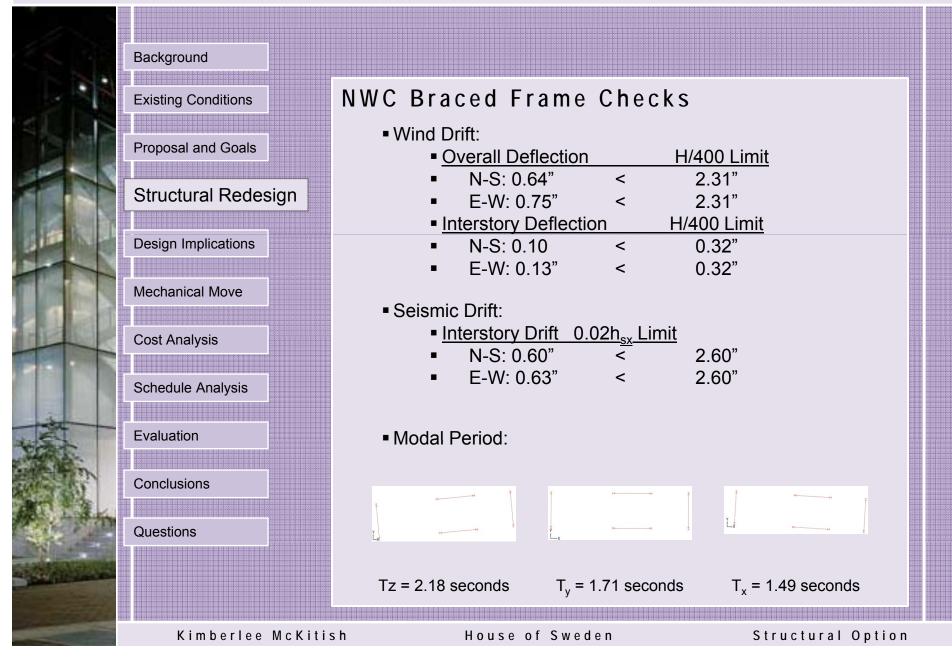
Background

Existing Conditions

Proposal and Goals

Structural Redesign


Design Implications
Mechanical Move
Cost Analysis
Schedule Analysis
Evaluation
Conclusions
Questions


NWC Moment Frame Checks

Check	Comment	Observation
Story Drifts	Allowable story drifts for each level are met in each of the two orthogonal directions. The computed story drifts is at most 81% of the allowable.	OK
Torsion	Accidental Torsion = 5%. Inherent torsion is assumed by applying loads at the center of mass and being resisted by the center of rigidity of the structure.	ОК
Redundancy	There are only three frames in each direction so each frame had to be designed to resist more than 25% of the total story shear, however, in SDC=B, ρ is still equal to 1.0.	ОК
Modal Period	ASCE7-05 Approximate Period, CuTa: 1.63 sec RAM modal period X Direction: 2.22 sec RAM modal period Y-Direction: 2.29 sec The RAM model period is more than the conservative period approximation of the ASCE7-05 code.	ОК
Member Spot Checks	Columns and beams are approximately 30% to 98% of their total design strength based off their interaction equations. This occurs due to member updates for size uniformity and drift improvement.	Some System Overdesign

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications Mechanical Move Cost Analysis Schedule Analysis Evaluation Conclusions Questions

Cantilever Solution

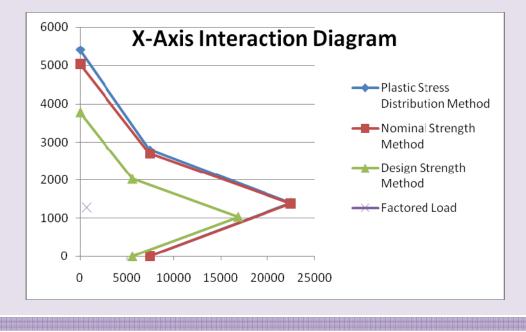
Hanger	Gravity Load	Р _и (К)	Shape	Rupture ФР _n (K)
A1	125.02	146.37	HSS 7.0x0.250	161
B1	237.93	278.56	HSS7.0x0.500	311
C1	227.81	266.71	HSS7.0x0.500	311
D1	217.48	254.62	HSS7.0x0.500	311
E1	222.61	260.63	HSS7.0x0.500	311
F1	193.71	226.79	HSS7.0x0.375	238
G1	93.5	109.47	HSS7.0x0.188	122
G2	160.64	188.07	HSS7.0x0.312	200
147	384.09	301.02	HSS7.0x0.500	311
179, 28.33	143.9	168.47	HSS7.0x0.312	200
186.67, 56.83	223.32	261.46	HSS7.0x0.500	311
195.33, 86.83	217.28	254.39	HSS7.0x0.500	311
203, 113.83	112.32	131.50	HSS 7.0x0.250	161

Kimberlee McKitish

House of Sweden

Background

Existing Conditions


Proposal and Goals

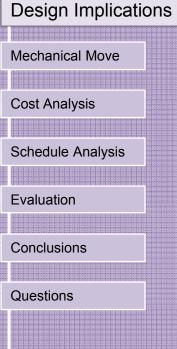
Structural Redesign

Column Interaction Diagram

	X- Axis	Plastic Stress Distribution Method		Nominal Strength Method		Design Strength Method	
	Point	P (K)	M (in-K)	P (K)	M (in-K)	P (K)	M (in-K)
	Α	5397	0	5036	0	3777	0
-	С	2788	7448	2690	7448	2018	5586
	D	1394	16389	1369	16389	1027	12292
	В	0	7448	0	7448	0	5586

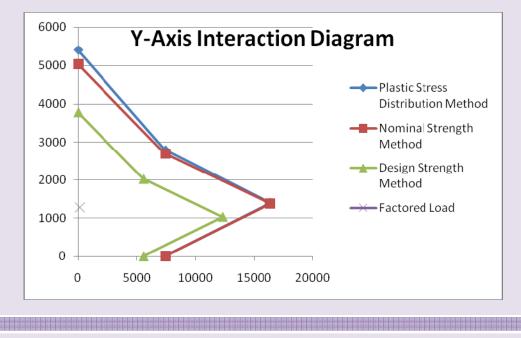
Kimberlee McKitish

House of Sweden



Background

Existing Conditions


Proposal and Goals

Structural Redesign

Column Interaction Diagram

	X- Axis	Plastic Stress Distribution Method		Nominal Strength Method		Design Strength Method	
	Point	P (K)	M (in-K)	P (K)	M (in-K)	P (K)	M (in-K)
	Α	5397	0	5036	0	3777	0
-	С	2788	7448	2690	7448	2018	5586
	D	1394	22470	1369	22470	1027	16852
	В	0	7448	0	7448	0	5586

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Garage Column and Progressive Collapse

	Foundation Cost Estimate					
	Steel Rebar:					
	Cost: \$830/ton	Total Original Tonnage	358.63	\$297,663		
	Contractor Cost	Total New Tonnage	304.84	\$253,013		
ions			Total Steel Savings:	-\$44,650 (-15%)		
10115						
	4000 psi NW Concre	te:				
	Cost: \$115/CY	Total Original Volume (CY)	6,156	\$707,974		
	Contractor Cost	Total New Volume (CY)	5,387	\$619,477		
			Total Concrete Savings:	-\$88,497 (-13%)		
	460 HP Dozer, 150' H	laul, Clay Soil Excavation:				
	Cost: \$3.18/CY	Total Original Volume (CY)	10,006	\$31,820		
	RS Means Cost	Total New Volume (CY)	9,234	\$29,365		
			Total Excavation Savings:	-\$2,455 (-7.7%)		
			Total Original Cost:	\$1,037,457		
			Total New Cost:	\$901,855		
			Total Savings:	-\$135,602 (-13%)		

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Parking Study

	Original Parking Count					
Building Use	Requirements	Parking Required	Parking Provided			
General OfficeOne space per 1,800122,520 SFSF over 2,000 SF		67 Spaces	67 Spaces			
Residential 23 Units	One space per 3 residential units	8 Spaces	8 Spaces			
	Total Spaces Required	75 spaces	75 Spaces			
	Handicapped Spaces Required	3 Spaces	4 Spaces			
	Allowable Compact Spaces (40% of Total)	30 Spaces Max.	30 Spaces			

New Parking Count						
Building Use	Requirements	Parking Required	Parking Provided			
General Office 122,520 SF	One space per 1,800 SF over 2,000 SF	67 Spaces	67 Spaces			
Residential 26 Units	One space per 3 residential units 9 Spaces		9 Spaces			
	Total Spaces Required	76 spaces	76 Spaces			
	Handicapped Spaces Required	4 Spaces	4 Spaces			
	Allowable Compact Spaces (40% of Total)	30 Spaces Max.	30 Spaces			

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Acoustics Study

Transmission Loss (dB)						
Construction	125	250	500	1000	2000	4000
Construction	Hz	Hz	Hz	Hz	Hz	Hz
8" painted concrete block wall	34	40	44	49	59	64
4" Airspace Improvement in TL	10	12	24	30	35	35
4" concrete block + 4" airspace						
+ 4" concrete block with 2"	44	52	68	79	94	99
glass fiber in airspace						

Sound Pressure Level (dB)						
	125	250	500	1000	2000	4000
	Hz	Hz	Hz	Hz	Hz	Hz
Sound in Source Room	83	85	86	84	83	81
Background Noise Level (RC-	40	35	30	25	20	15
25)						
Required Noise Reduction	43	50	56	59	63	66
Provided Noise Reduction	44	52	68	79	94	99
Acceptable	Yes	Yes	Yes	Yes	Yes	Yes

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Zoning Impacts

Zoning: W-2						
FAR	Allowed Square	Original Provided	Thesis Provided			
	Footage	Square Footage	Square Footage			
Total: 4.0	245,040 167,298		185,426			
Office: 2.0	122,520	122,520	122,520			
Residential: 2.0	122,520	54,778	62,906			

More residential space is allowed by code

Waterproofing

- Parking level is below the water table
- Needed to prevent water from infiltrating
- Provided a way for water to exit
- Redesigned waterproofing details to reflect current job
- Generated a set of Good Practice guidelines for waterproofing

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

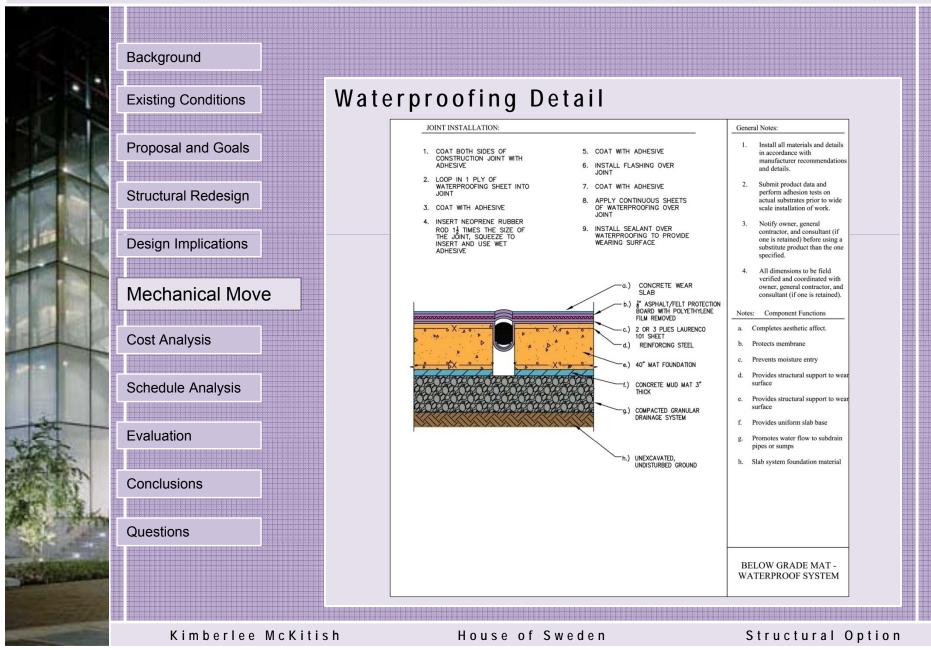
Questions

Waterproofing Checklist

- 1. Hire a building envelop consultant to review the waterproofing details. On most projects, architects normally deal with waterproofing details, but there is no one in the field checking the work. Most waterproofing details in construction documents are just standard details that have not been tailored for specific jobs. A consultant can perform a document review of the details and point out problem areas and this service normally only costs around \$5,000. This may seem costly, but it can save time and money later in the project when waterproofing details either need to be clarified, or are installed incorrectly and need to be taken out and reinstalled.
- 2. Hire a consultant to oversee correct installation of the waterproofing during the construction of the building. This is an expansive endeavor, but it is cheaper than hiring the consultant a few years after the final fit-out of the building when leaks start to occur and all the waterproofing has to be ripped out and reinstalled.
- 3. Hire experienced construction firms. There is an organization called the National Organization of Waterproofing and Structural Repair Contractors. This organization is a professional trade association whose members are required to uphold a strict standard of practice and cannon of ethics. These documents can be reviewed on their website http://nawsrc.org. It is also possible to locate members and suppliers in the area of the construction project who are required to do the best possible job of waterproofing the construction job.

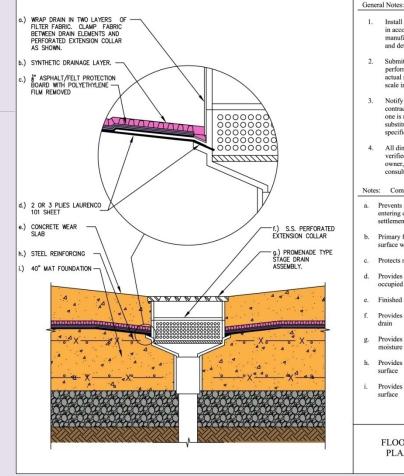
Kimberlee McKitish

House of Sweden



Waterproofing Checklist

- Ensure that the waterproofing is continuous around the entire 4. **building.** This is one of the most important details. Even a small tear in the waterproofing can allow enough water to penetrate to the interior of the building that an identifiable leak can be found. Ideally, there should be no penetrations in the waterproofing, but this is impossible as windows and doors are a necessary part of design. Unnecessary penetrations as part of installation should be avoided. These include nail holes, tears in the waterproofing sheets, or outlet penetrations to name a few. If these occur, a new sheet of waterproofing should be installed, or at the very least, they should be repaired with mastic.
- Create a mock-up of the system and/or perform tests during 5. construction. It is possible to hire testing firms to come in and test curtain walls, brick panels, and other water sensitive areas to find trouble areas before the fit-out of the building when they will become harder and more costly to repair. These tests can cost approximately \$10,000/day, but they will again be cheaper than trying to fix the problem areas later during the lifetime of the building when leaks occur.
- Perform regular building maintenance. Replacing all the sealant on a 6. building every 5 years is cheaper than removing all the curtain walls, ripping out the steel that is now corroded because of water infiltration, and then replacing all the steel and the curtain walls every 10 years.


Kimberlee McKitish

House of Sweden

Waterproofing Detail

Install all materials and details in accordance with manufacturer recomm and details.

Submit product data and 2. perform adhesion tests on actual substrates prior to wide scale installation of work.

Notify owner, general 3. contractor, and consultant (if one is retained) before using a substitute product than the one specified.

4. All dimensions to be field verified and coordinated with owner, general contractor, and consultant (if one is retained).

Notes: Component Functions

a. Prevents soil and backfill from entering drain and causing settlement/voids around drain

Primary flow path for invasive b. surface water

Protects membrane

d. Provides moisture protection to occupied spaces

Finished surface e.

f. Provides effective drainage into drain

Provides surface and subsurface moisture removal

h Provides structural support to wear surface

Provides structural support to wear surface

FLOOR DRAIN -PLAZA AREA

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Structural Cost Information

	Column	Length (ft)	Cost/ft	Cost
	W14x43	1800.50	\$29.90	\$53,834.95
	W14x61	715.00	\$40.83	\$29,193.45
off	W14x74	335.90	\$47.52	\$15,961.97
Takeoff	W14x82	216.60	\$52.25	\$11,317.35
Та	W14x90	260.00	\$58.58	\$15,230.80
mn	W14x109	162.50	\$71.06	\$11,547.25
Column	W14x120	65.00	\$77.76	\$5,054.40
ပို	W14x132	65.00	\$85.04	\$5,527.60
	W14x145	32.50	\$112.75	\$3,664.38
			Total Cost:	\$151,332.14
	Adjusted Cost:			\$112,529.03

	Beam	Length (ft)	Cost/ft	Cost
	CB12x15	6863.50	\$32.77	\$224,916.90
	CB15x19	5383.45	\$24.57	\$132,271.37
	CB18x26	2592.00	\$26.00	\$67,392.00
off	CB27x46	6671.07	\$42.23	\$281,719.29
Takeoff	CB27x60	2070.14	\$51.03	\$105,639.24
	CB27x76	877.00	\$65.83	\$57,732.91
Beam	CB27x97	379.59	\$81.97	\$31,114.99
Be	CB27x119	160.55	\$98.35	\$15,790.09
	CB36x162	139.50	\$125.81	\$17,550.50
	CB50x221	50.00	\$193.45	\$9,672.50
			Total Cost:	\$943,799.78
		\$701,799.84		

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Structural Cost Information

õff	Brace	Length (ft)	Cost/ft	Cost
Takeofi	HSS7.5x0.5	865.30	\$75.46	\$65,295.54
Brace Ta	HSS10.0x0.625	207.50	\$114.30	\$23,717.25
		Total Cost:	\$89,012.79	
		\$66,189.00		

	Floor	Area (ft ²)	Cost/ft ²	Cost
Steel Deck Takeoff	Roof	16269	\$1.10	\$17,895.90
	Penthouse	25914	\$1.10	\$28,505.40
ak	Sixth	32427	\$1.10	\$35,669.70
⊢ ¥	Fifth	32427	\$1.10	\$35,669.70
)ec	Fourth	32427	\$1.10	\$35,669.70
a B	Third	28646	\$1.10	\$31,510.60
Ste	Second	17037	\$1.10	\$18,740.70
•	Total Cost:			\$185,765.80
		Adju	isted Cost:	\$138,133.54

	Floor	Area (ft ²)	Thickness (ft)	Volume (yd ³)	Cost/yd ³	Cost
=	Roof	16269	0.46	276	\$85.00	\$23,474.56
0e	Penthouse	25914	0.46	440	\$85.00	\$37,391.34
Takeoff	Sixth	32427	0.46	550	\$85.00	\$46,788.96
	Fifth	32427	0.46	550	\$85.00	\$46,788.96
cre	Fourth	32427	0.46	550	\$85.00	\$46,788.96
Concrete	Third	28646	0.46	486	\$85.00	\$41,333.35
ပ	Second	17037	0.46	289	\$85.00	\$24,582.71
					Total Cost:	\$267,148.83

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions

Questions

Penthouse Cost Analysis

Penthouse Redesign Costs and Potential Profit

st	Number of Units	3
	Average size	2709 SF
ŭ	Size Modifier	0.93
Interior Cost	Cost Per Unit	\$196,500
	Modified Cost Per Unit	\$182,745
	Total Cost	\$548,235

• 2.5% increase to original budget

rofit ded	# of Units Added	3	
ntial F m Ado Units	Average Cost of Unit	\$1,500,000.00	
Pote Fro	Total Possible Profit	\$4,500,000.00	

\$4,500,000 potential gross profit

Kimberlee McKitish

House of Sweden

Background

Existing Conditions

Proposal and Goals

Structural Redesign

Design Implications

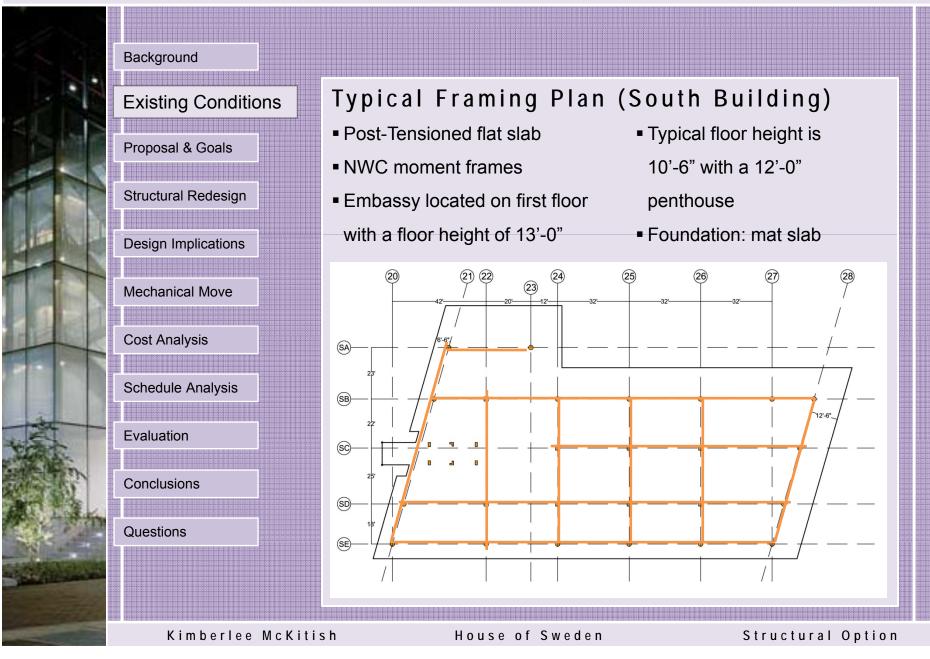
Mechanical Move

Cost Analysis

Schedule Analysis

Evaluation

Conclusions


Questions

Penthouse Schedule Analysis

Layout2Mechanical Ducts/Shafts2Vertical Plumbing Risers2Vertical Fire Protection Risers3Plumbing Rough-In5Sprinkler Rough-In5Duct Rough-in15Electrical Rough-In7CMU Walls9	
Vertical Plumbing Risers2Vertical Fire Protection Risers3Plumbing Rough-In5Sprinkler Rough-In5Duct Rough-in15Electrical Rough-In7CMU Walls9	
Vertical Fire Protection Risers3Plumbing Rough-In5Sprinkler Rough-In5Duct Rough-in15Electrical Rough-In7CMU Walls9	
Plumbing Rough-In5Sprinkler Rough-In5Duct Rough-in15Electrical Rough-In7CMU Walls9	
Sprinkler Rough-In5Duct Rough-in15Electrical Rough-In7CMU Walls9	
Duct Rough-in15Electrical Rough-In7CMU Walls9	
Electrical Rough-In 7 CMU Walls 9	
CMU Walls 9	
o Mechanical Controls Rough-In 3	
Set Mechanical Equipment 20 Mechanical and Plumbing Insulation 5 Metal Stud Framing 2 Shaftwall Fireproofing 2 In-Wall Electrical Rough-In 3	
Mechanical and Plumbing Insulation 5	
Metal Stud Framing 2	
Shaftwall Fireproofing 2	
Pennov In-Wall Electrical Rough-In 3	
Inspections 1	
Hang Drywall 2	
Finish Drywall 1	
Prime Paint 2	
Point Up 1	
Hang Doors 1	
Set Light Fixtures 5	
Finish Hardware 2	
Mechanical Trim-Out 1	
Electrical Trim-Out 1	
Punch Out 5	

Kimberlee McKitish

House of Sweden

